Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 135: 102983, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640636

RESUMEN

Myasthenia gravis (MG) is a debilitating autoimmune disease characterized by muscle fatigue and weakness caused by autoantibody- and complement-mediated damage to the neuromuscular junction. This study sought to compare the efficacy of unique sets of monoclonal antibody-siRNA conjugates, individually (mono) or in combination (duo), against the crucial receptors predominantly or solely expressed on two subsets of B cells-plasma B cells and their precursor (transitional mature B) cells in a mouse model of MG. At the optimized doses, the conjugates, likely due to the combined activities of mAb and siRNA, substantially decreased the expression levels of CD268 (B cell-activating factor receptor) in mature B cells and CD269 (B-cell maturation antigen) in plasma cells concomitantly with reducing the levels of acetylcholine receptor (AChR)-specific autoantibodies. PEGylation, but not pretreatment with an antibody against type 1 interferon receptor, further improved duoconjugate-induced reduction in the autoantibody levels. Our results show that the duoconjugate treatment significantly improved the clinical symptoms of MG, consistent with the preservation of bungarotoxin-bound functional AChRs. In the future, developing similar target-specific combination molecules can potentially turn into a new and effective therapeutic approach for MG.


Asunto(s)
Miastenia Gravis Autoinmune Experimental , Ratones , Animales , ARN Interferente Pequeño , Receptores Colinérgicos , Anticuerpos Monoclonales , Autoanticuerpos
2.
Elife ; 112022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069678

RESUMEN

There is ample phylogenetic evidence that many critical virus functions, like immune evasion, evolved by the acquisition of genes from their hosts through horizontal gene transfer (HGT). However, the lack of an experimental system has prevented a mechanistic understanding of this process. We developed a model to elucidate the mechanisms of HGT into vaccinia virus, the prototypic poxvirus. All identified gene capture events showed signatures of long interspersed nuclear element-1 (LINE-1)-mediated retrotransposition, including spliced-out introns, polyadenylated tails, and target site duplications. In one case, the acquired gene integrated together with a polyadenylated host U2 small nuclear RNA. Integrations occurred across the genome, in some cases knocking out essential viral genes. These essential gene knockouts were rescued through a process of complementation by the parent virus followed by nonhomologous recombination during serial passaging to generate a single, replication-competent virus. This work links multiple evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major drivers for virus evolution.


Asunto(s)
Poxviridae , Transferencia de Gen Horizontal , Filogenia , Poxviridae/genética , Retroelementos/genética , Virus Vaccinia/genética
3.
Viruses ; 14(7)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35891544

RESUMEN

Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.


Asunto(s)
Poxviridae , eIF-2 Quinasa , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación , Poxviridae/genética , Poxviridae/metabolismo , ARN Bicatenario/genética , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Replicación Viral , eIF-2 Quinasa/metabolismo
4.
PLoS Pathog ; 17(1): e1009183, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444388

RESUMEN

The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined.


Asunto(s)
Antivirales/antagonistas & inhibidores , Especificidad del Huésped , Orthopoxvirus/clasificación , Orthopoxvirus/fisiología , Infecciones por Poxviridae/virología , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antivirales/metabolismo , Células HeLa , Humanos , Fosforilación , Filogenia , Infecciones por Poxviridae/genética , Infecciones por Poxviridae/metabolismo , Homología de Secuencia , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
5.
Nat Commun ; 12(1): 595, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500409

RESUMEN

Zika virus (ZIKV) emerged from obscurity in 2013 to spread from Asia to the South Pacific and the Americas, where millions of people were infected, accompanied by severe disease including microcephaly following congenital infections. Phylogenetic studies have shown that ZIKV evolved in Africa and later spread to Asia, and that the Asian lineage is responsible for the recent epidemics in the South Pacific and Americas. However, the reasons for the sudden emergence of ZIKV remain enigmatic. Here we report evolutionary analyses that revealed four mutations, which occurred just before ZIKV introduction to the Americas, represent direct reversions of previous mutations that accompanied earlier spread from Africa to Asia and early circulation there. Our experimental infections of Aedes aegypti mosquitoes, human cells, and mice using ZIKV strains with and without these mutations demonstrate that the original mutations reduced fitness for urban, human-amplifed transmission, while the reversions restored fitness, increasing epidemic risk. These findings include characterization of three transmission-adaptive ZIKV mutations, and demonstration that these and one identified previously restored fitness for epidemic transmission soon before introduction into the Americas. The initial mutations may have followed founder effects and/or drift when the virus was introduced decades ago into Asia.


Asunto(s)
Epidemias , Evolución Molecular , Aptitud Genética , Infección por el Virus Zika/epidemiología , Virus Zika/genética , Aedes/virología , África/epidemiología , Américas/epidemiología , Sustitución de Aminoácidos , Animales , Asia/epidemiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Humanos , Queratinocitos , Ratones , Mutación , Filogenia , Cultivo Primario de Células , Salud Urbana/estadística & datos numéricos , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
6.
Proc Natl Acad Sci U S A ; 117(33): 20190-20197, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747564

RESUMEN

Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.


Asunto(s)
Epidemias , Proteínas del Envoltorio Viral/genética , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Filogenia , Embarazo , Carga Viral , Virulencia , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología
7.
J Vis Exp ; (159)2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32510495

RESUMEN

Vaccinia virus (VACV) was instrumental in eradicating variola virus (VARV), the causative agent of smallpox, from nature. Since its first use as a vaccine, VACV has been developed as a vector for therapeutic vaccines and as an oncolytic virus. These applications take advantage of VACV's easily manipulated genome and broad host range as an outstanding platform to generate recombinant viruses with a variety of therapeutic applications. Several methods have been developed to generate recombinant VACV, including marker selection methods and transient dominant selection. Here, we present a refinement of a host range selection method coupled with visual identification of recombinant viruses. Our method takes advantage of selective pressure generated by the host antiviral protein kinase R (PKR) coupled with a fluorescent fusion gene expressing mCherry-tagged E3L, one of two VACV PKR antagonists. The cassette, including the gene of interest and the mCherry-E3L fusion is flanked by sequences derived from the VACV genome. Between the gene of interest and mCherry-E3L is a smaller region that is identical to the first ~150 nucleotides of the 3' arm, to promote homologous recombination and loss of the mCherry-E3L gene after selection. We demonstrate that this method permits efficient, seamless generation of rVACV in a variety of cell types without requiring drug selection or extensive screening for mutant viruses.


Asunto(s)
Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/metabolismo , Riñón/metabolismo , Infecciones por Poxviridae/metabolismo , Poxviridae/genética , eIF-2 Quinasa/metabolismo , Animales , Células Cultivadas , Especificidad del Huésped , Humanos , Riñón/citología , Riñón/virología , Infecciones por Poxviridae/virología , Conejos , Virus Vaccinia/genética
8.
Am J Trop Med Hyg ; 102(4): 857-868, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067624

RESUMEN

Chikungunya fever (CHIKF) is a major public health concern and is caused by chikungunya virus (CHIKV). In 2005, the virus was reintroduced into India, resulting in massive outbreaks in several parts of the country. During 2010 and 2016 outbreaks, we recruited 588 patients from a tertiary care hospital in New Delhi, India, during the acute phase of CHIKF; collected their blood and clinical data; and determined their arthralgic status 12 weeks post-onset of fever. We evaluated IgM/IgG CHIKV-binding antibodies and their neutralizing capacity, sequenced complete genomes of 21 CHIKV strains, and correlated mutations with patient sequelae status. We also performed infections in murine models using representative strains from each outbreak to evaluate differences in pathogenesis. Our screening and analysis revealed that patients of the 2016 outbreak developed earlier IgM and neutralizing antibody responses that were negatively correlated with sequelae, compared with 2010 patients. Mutations that correlated with human disease progression were also correlated with enhanced murine virulence and pathogenesis. Overall, our study suggests that the development of early neutralizing antibodies and sequence variation in clinical isolates are predictors of human sequelae.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Brotes de Enfermedades , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Afinidad de Anticuerpos , Fiebre Chikungunya/patología , Niño , Femenino , Genoma Viral , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , India/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
9.
Sci Rep ; 9(1): 20399, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31892710

RESUMEN

Mayaro virus (MAYV) causes an acute febrile illness similar to that produced by chikungunya virus (CHIKV), an evolutionary relative in the Semliki Forest virus complex of alphaviruses. MAYV emergence is typically sporadic, but recent isolations and outbreaks indicate that the virus remains a public health concern. Given the close phylogenetic and antigenic relationship between CHIKV and MAYV, and widespread distribution of CHIKV, we hypothesized that prior CHIKV immunity may affect MAYV pathogenesis and/or influence its emergence potential. We pre-exposed immunocompetent C57BL/6 and immunocompromised A129 or IFNAR mice to wild-type CHIKV, two CHIKV vaccines, or a live-attenuated MAYV vaccine, and challenged with MAYV. We observed strong cross-protection against MAYV for mice pre-exposed to wild-type CHIKV, and moderately but significantly reduced cross-protection from CHIKV-vaccinated animals. Immunity to other alphavirus or flavivirus controls provided no protection against MAYV disease or viremia. Mechanistic studies suggested that neutralizing antibodies alone can mediate this protection, with T-cells having no significant effect on diminishing disease. Finally, human sera obtained from naturally acquired CHIKV infection cross-neutralized MAYV at high titers in vitro. Altogether, our data suggest that CHIKV infection can confer cross-protective effects against MAYV, and the resultant reduction in viremia may limit the emergence potential of MAYV.


Asunto(s)
Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/transmisión , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Epidemias , Ratones
10.
mBio ; 9(2)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511072

RESUMEN

Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity.IMPORTANCE Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.


Asunto(s)
Virus Chikungunya/patogenicidad , Alphavirus/genética , Alphavirus/inmunología , Alphavirus/patogenicidad , Animales , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Ratones , Ratones Mutantes , Primates , Vacunas Virales/uso terapéutico , Virulencia/genética
11.
Antiviral Res ; 143: 246-251, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28461071

RESUMEN

Alphaviruses require conserved cysteine residues for proper folding and assembly of the E1 and E2 envelope glycoproteins, and likely depend on host protein disulfide isomerase-family enzymes (PDI) to aid in facilitating disulfide bond formation and isomerization in these proteins. Here, we show that in human HEK293 cells, commercially available inhibitors of PDI or modulators thereof (thioredoxin reductase, TRX-R; endoplasmic reticulum oxidoreductin-1, ERO-1) inhibit the replication of CHIKV chikungunya virus (CHIKV) in vitro in a dose-dependent manner. Further, the TRX-R inhibitor auranofin inhibited Venezuelan equine encephalitis virus and the flavivirus Zika virus replication in vitro, while PDI inhibitor 16F16 reduced replication but demonstrated notable toxicity. 16F16 significantly altered the viral genome: plaque-forming unit (PFU) ratio of CHIKV in vitro without affecting relative intracellular viral RNA quantities and inhibited CHIKV E1-induced cell-cell fusion, suggesting that PDI inhibitors alter progeny virion infectivity through altered envelope function. Auranofin also increased the extracellular genome:PFU ratio but decreased the amount of intracellular CHIKV RNA, suggesting an alternative mechanism of action. Finally, auranofin reduced footpad swelling and viremia in the C57BL/6 murine model of CHIKV infection. Our results suggest that targeting oxidative folding pathways represents a potential new anti-alphavirus therapeutic strategy.


Asunto(s)
Antivirales/farmacología , Fiebre Chikungunya/virología , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , Interacciones Huésped-Patógeno/fisiología , Infecciones por Alphavirus/virología , Animales , Auranofina/antagonistas & inhibidores , Fiebre Chikungunya/mortalidad , Virus Chikungunya/patogenicidad , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Flavivirus/efectos de los fármacos , Células HEK293 , Humanos , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , Proteína Disulfuro Isomerasas/farmacología , Pliegue de Proteína , Reductasa de Tiorredoxina-Disulfuro/farmacología , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/virología
12.
Electrophoresis ; 38(11): 1515-1525, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28211116

RESUMEN

This paper reports the capture and detection of vaccinia virus particles based on AC dielectrophoresis (DEP) and electrochemical impedance measurements employing an embedded vertically aligned carbon nanofiber (VACNF) nanoelectrode array (NEA) versus a macroscopic indium-tin-oxide (ITO) transparent electrode in a "points-and-lid" configuration. The nano-DEP device was fabricated by bonding two SU-8 covered electrodes patterned using photolithography. The bottom electrode contains a 200 × 200 µm2 active region on a randomly distributed NEA and the top electrode contains a microfluidic channel in SU-8 spin-coated on ITO to guide the flow of the virus solution. The real-time impedance change was measured during DEP capture and validated with fluorescence microscopy measurements. The NEA was able to capture virus particles with a rather low AC voltage (∼8.0 V peak-to-peak) at 1.0 kHz frequency as the particles were passed through the fluidic channel at high flow velocities (up to 8.0 mm/s). A concentration detection limit as low as ∼2.58 × 103 particles/mL was obtained via impedance measurements after only 54 sec of DEP capture. At the low AC frequencies (50.0 Hz or less), the high electric field at the exposed VACNF tips induced electroporation of the DEP-captured virus particles, which was validated by fluorescence emission from the dyes staining lipophilic membrane and internal nucleic acid, respectively. This study suggests the possibility of integration of a fully functional electronic device for rapid, reversible and label-free capture and detection of pathogenic viruses, with a potential of generating electroporation to the captured the virus particles for further biochemical study.


Asunto(s)
Electroforesis/métodos , Electroporación/métodos , Dispositivos Laboratorio en un Chip , Análisis por Micromatrices , Nanofibras , Virus Vaccinia/aislamiento & purificación , Carbono , Simulación por Computador , Impedancia Eléctrica , Electrodos , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Colorantes Fluorescentes , Límite de Detección , Microelectrodos , Microscopía Fluorescente , Modelos Teóricos , Nanotecnología , Compuestos de Estaño/química
13.
Proc Natl Acad Sci U S A ; 113(14): 3855-60, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26903626

RESUMEN

Myxoma virus (MYXV) is a rabbit-specific poxvirus, which is highly virulent in European rabbits. The attenuation of MYXV and the increased resistance of rabbits following the release of MYXV in Australia is one of the best-documented examples of host-pathogen coevolution. To elucidate the molecular mechanisms that contribute to the restriction of MYXV infection to rabbits and MYXV attenuation in the field, we have studied the interaction of the MYXV protein M156 with the host antiviral protein kinase R (PKR). In yeast and cell-culture transfection assays, M156 only inhibited rabbit PKR but not PKR from other tested mammalian species. Infection assays with human HeLa PKR knock-down cells, which were stably transfected with human or rabbit PKR, revealed that only human but not rabbit PKR was able to restrict MYXV infection, whereas both PKRs were able to restrict replication of a vaccinia virus (VACV) strain that lacks the PKR inhibitors E3 and K3. Inactivation of M156R led to MYXV virus attenuation in rabbit cells, which was rescued by the ectopic expression of VACV E3 and K3. We further show that a mutation in the M156 encoding gene that was identified in more than 50% of MYXV field isolates from Australia resulted in an M156 variant that lost its ability to inhibit rabbit PKR and led to virus attenuation. The species-specific inhibition of rabbit PKR by M156 and the M156 loss-of-function in Australian MYXV field isolates might thus contribute to the species specificity of MYXV and to the attenuation in the field, respectively.


Asunto(s)
Myxoma virus/genética , Proteínas Virales/genética , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/genética , Animales , Australia , Línea Celular Tumoral , Células HeLa , Humanos , Mutación/genética , Myxoma virus/patogenicidad , Conejos , Proteínas Virales/metabolismo , Virulencia/genética , Replicación Viral/genética
14.
PLoS One ; 10(3): e0119189, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25734776

RESUMEN

As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.


Asunto(s)
Virus de la Ectromelia/genética , Regulación Viral de la Expresión Génica , Proteínas de Unión al ARN/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Animales , Línea Celular , Expresión Génica Ectópica , Células Epiteliales/patología , Células Epiteliales/virología , Especificidad del Huésped , Riñón/patología , Riñón/virología , Ratones , Proteínas de Unión al ARN/metabolismo , Conejos , Virus Vaccinia/patogenicidad , Proteínas Virales/metabolismo , Replicación Viral
15.
Nucleic Acids Res ; 42(16): 10321-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147208

RESUMEN

Translational control of transcription factor ATF4 through paired upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While it is typically induced by phosphorylation of eIF2α, ATF4 translation can be also induced by expression of a translational inhibitor protein, eIF5-mimic protein 1 (5MP1, also known as BZW2) in mammals. Here we show that the 5MP gene is maintained in eukaryotes under strong purifying selection, but is uniquely missing in two major phyla, nematoda and ascomycota. The common function of 5MP from protozoa, plants, fungi and insects is to control translation by inhibiting eIF2. The affinity of human 5MP1 to eIF2ß was measured as being equivalent to the published value of human eIF5 to eIF2ß, in agreement with effective competition of 5MP with eIF5 for the main substrate, eIF2. In the red flour beetle, Tribolium castaneum, RNA interference studies indicate that 5MP facilitates expression of GADD34, a downstream target of ATF4. Furthermore, both 5MP and ATF4 are essential for larval development. Finally, 5MP and the paired uORFs allowing ATF4 control are conserved in the entire metazoa except nematoda. Based on these findings, we discuss the phylogenetic and functional linkage between ATF4 regulation and 5MP expression in this group of eukaryotes.


Asunto(s)
Factor de Transcripción Activador 4/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factor de Transcripción Activador 4/biosíntesis , Animales , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/fisiología , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Humanos , Proteínas de Insectos/metabolismo , Sistemas de Lectura Abierta , Filogenia , Proteína Fosfatasa 1/metabolismo , Saccharomyces cerevisiae/metabolismo , Tribolium/enzimología , Tribolium/genética , Tribolium/crecimiento & desarrollo
16.
Infect Genet Evol ; 21: 15-40, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24161410

RESUMEN

Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.


Asunto(s)
Evolución Biológica , Poxviridae/genética , Poxviridae/patogenicidad , Proteínas Virales/genética , Animales , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Filogenia , Poxviridae/fisiología , Infecciones por Poxviridae/virología , Proteínas Virales/metabolismo , Tropismo Viral , Virulencia , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...